Selection of multinomial logit models via association rules analysis
نویسندگان
چکیده
In this research, we propose a novel approach for a multinomial logit model selection procedure: specifically, we apply association rules analysis to identifying potential interactions for multinomial logit modeling. Interaction effects are very common in reality, but conventional multinomial logit model selection methods typically ignore them. This is especially true for higher-order interactions. Here, we develop a model selection framework to address this problem. Specifically, we focus on building an optimal multinomial logit model by (1) exploring the combinations of input variables that have a significant impact on response (via association rules analysis); (2) selecting potential (low-order and high-order) interactions; (3) converting these potential interactions into new dummy variables; and (4) performing variable selections among all the input variables and the newly created dummy variables (interactions). Our model selection procedure is the first approach to provide a global search for potential interactions and establish the optimal combination of main effects and interaction effects in the multinomial logit model. In our investigation, we consider both simulated and real-life datasets, thereby confirming the effectiveness and efficiency of this method. © 2013 Wiley Periodicals, Inc.
منابع مشابه
Monitoring Multinomial Logit Profiles via Log-Linear Models (Quality Engineering Conference Paper)
In certain statistical process control applications, quality of a process or product can be characterized by a function commonly referred to as profile. Some of the potential applications of profile monitoring are cases where quality characteristic of interest is modelled using binary,multinomial or ordinal variables. In this paper, profiles with multinomial response are studied. For this purpo...
متن کاملModeling the behavior of disordered taxi drivers of Tehran for choosing passenger and destination
In this study, the manner of private taxis drivers has been investigated for choosing passenger and destination from a fixed point. Therefore, two models called Multinomial and Nested Logit Models have been utilized. The information gained by scrolling in 2016 is the input data, which are in the format of revealed preference, acquired by the verbal interview in Vanak Square in Tehran (Iran). Ba...
متن کاملProbit and nested logit models based on fuzzy measure
Inspired by the interactive discrete choice logit models [Aggarwal, 2019], this paper presents the advanced families of discrete choice models, such as nested logit, mixed logit, and probit models to consider the interaction among the attributes. Besides the DM's attitudinal character is also taken into consideration in the computation of choice probabilities. The proposed choice models make us...
متن کاملMultinomial logit models with implicit variable selection
Multinomial logit models which are most commonly used for the modeling of unordered multi-category responses are typically restricted to the use of few predictors. In the high-dimensional case maximum likelihood estimates frequently do not exist. In this paper we are developing a boosting technique called multinomBoost that performs variable selection and fits the multinomial logit model also w...
متن کاملSemantic Analysis of Association Rules via Item Response Theory
This paper aims to install Latent trait on Association Rule Mining for the semantic analysis of consumer behavior patterns. We adapt Item Response Theory, a famous educational testing model, in order to derive interesting insights from rules by Latent trait. The primary contributions of this paper are fourfold. (1) Latent trait as an unified measure can measure interestingness of derived rules ...
متن کامل